Quotient (universal algebra) - définition. Qu'est-ce que Quotient (universal algebra)
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Quotient (universal algebra) - définition

CONSTRUCTION IN UNIVERSAL ALGEBRA
Congruence lattice; Compatible operation; Maltsev variety; Maltsev conditions; Quotient algebra (universal algebra)

Quotient (universal algebra)         
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation.
Universal algebra         
FIELD OF MATHEMATICS CONCERNING THE THEORY OF ALGEBRAIC STRUCTURES
Universal Algebra; Equational theory; General algebra; Equational reasoning; History of universal algebra
<logic> The model theory of first-order {equational logic}. (1997-02-25)
Universal algebra         
FIELD OF MATHEMATICS CONCERNING THE THEORY OF ALGEBRAIC STRUCTURES
Universal Algebra; Equational theory; General algebra; Equational reasoning; History of universal algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures.

Wikipédia

Quotient (universal algebra)

In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.

The idea of the quotient algebra abstracts into one common notion the quotient structure of quotient rings of ring theory, quotient groups of group theory, the quotient spaces of linear algebra and the quotient modules of representation theory into a common framework.